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Abstract
The quantum mechanical hypervirial theorems (HVT) technique is used in
treating two basic inequalities relating the ground-state mean square radius
of the orbit of a particle in a central potential and its kinetic energy,
respectively, to the spacing of the two lowest energy levels �E. For quite a
wide class of those potentials, the parameters of which also lead to a sufficiently
small dimensionless quantity s, the difference between the two sides of each
inequality is of order s3 and higher (while �E is of order s and higher), and
thus it is expected in general to be quite small.

PACS numbers: 02.60.−x, 03.65.−w, 21.80.+a

The quantum mechanical hypervirial theorems (HVT) technique is an efficient technique in
treating quite a few problems, avoiding the use of the wavefunction [1–5]. The aim of this
paper is to discuss in this context two basic (in)equalities which are known in the literature.
They refer to physically interesting quantities for a particle, in its ground state, moving non-
relativistically in a three-dimensional central potential V = V(r).

The first (in)equality relates the mean square radius (msr) of its orbit: 〈r2〉1s ≡ 〈r2〉00 to
the spacing between the two lowest energy levels�E ≡ (E1p − E1s) ≡ (E01 − E00):

〈r2〉1s � 3h̄2

2µ(E1p − E1s)
(1a)

where µ is the mass of the particle or its reduced mass if the particle moves in the field of
another particle or of a ‘core system’.

The second relates the expectation value of its kinetic energy operator to the same energy-
level spacing:

〈T̂ 〉1s � 3
4 (E1p − E1s). (2a)

In both relations, the equality sign holds for the harmonic oscillator (HO) potential.
Relations (1a) and (2a) were derived on the basis of the Thomas–Reiche–Kuhn sum rule

by Bertlmann and Martin [6, 7] in discussing a special application of them. As was mentioned
in [7], however, they were derived originally in an alternative way and quoted in [8]. Reference
to them [9] and their extensions [10] has also been useful in discussing single-particle aspects
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of a � in hypernuclei. Since both relations are, unfortunately, in a form of inequality (but for
the HO potential), a pertinent question is whether the inequalities ‘get saturated’ [10], that is
whether they become equalities approximately (e.g. within a few per cent). This depends on
the functional form (the shape) of the central potential considered and also on the values of
its parameters. For the singular Coulomb potential, the deviation from equality is quite large
while for other potentials it can become fairly small.

In order to discuss this matter, we write relations (1a) and (2a) as

E1p − E1s � 3h̄2

2µ〈r2〉1s
(1b)

or

E1p − E1s = 3h̄2

2µ〈r2〉1s
+ C1 C1 = −|C1| < 0 (1c)

and

E1p − E1s � 4
3 〈T̂ 〉1s (2b)

or

E1p − E1s = 4
3 〈T̂ 〉1s + C2 C2 = −|C2| < 0 (2c)

and express the ‘correction terms’ C1 and C2 in terms of the potential parameters.
In this paper we consider, quite generally, the fairly wide class of central potentials of the

form

V (r) = −Df (r/R) 0 � r < ∞ (3)

where D > 0 is the potential depth, R > 0 its radius and f (f (0) = 1) the ‘potential form
factor’ (determining its shape) which is further assumed to be an appropriate analytic function
of even powers of x = r/R with d2f/dx2|x=0 < 0. Potentials of this class include the well-
known Gaussian potential: VG(r) = −D e−r2/R2

, the (reduced) Pöschl–Teller (PT) potential:
VPT(r) = −D cosh−2(r/R) and others, which have been used in practice.

Application of the HVT technique to that class of potentials has led to (truncated)
expansions of the quantities of interest, such as the energy eigenvalues Enl, the ms radii
of the particle orbits 〈r2〉nl etc of the form [11]

Enl = −Df1(s) 〈r2〉nl = R2f2(s) 〈T̂ 〉nl = −Ds
2

∂f1(s)

∂s
(4)

where f1(s) and f2(s) are power series of the dimensionless quantity

s = [h̄2/(2µDR2)]1/2 (5)

which is assumed to be sufficiently small. The coefficients in those power series depend on
the quantum numbers nl of the state and on the numbers:

dk = 1

(2k)!

d2k

dx2k
f (x)|x=0 (6)

determined by the potential shape.
Use of the explicit expressions of the coefficients in the power series in (4) (see [11] and

references therein) leads, after some algebra, to the following expressions for the quantities in
(1) and (2) by keeping in them terms of order s4:

�E = E1p − E1s = 2D(−d1)
1/2s

{
1 − 5

2 (−d1)
1/2d−2

1 d2s + 5
8d

−3
1

[
18d2

2 − 21d1d3
]
s2

+ 5
64 (−d1)

1/2d−5
1

[
1008d2

1d4 − 2268 d1d2d3 + 1271 d3
2

]
s3 + · · ·} (7)
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〈r2〉1s = 3
2R

2(−d1)
−1/2s

{
1 + 5

2 (−d1)
1/2d−2

1 d2s − 5
16d

−3
1

[
55d2

2 − 42d1d3
]
s2

− 45
8 (−d1)

1/2d−5
1

[
14d2

1d4 − 42d1d2d3 + 29d3
2

]
s3 + · · ·} (8)

〈T̂ 〉1s = 3
2D(−d1)

1/2s
{
1 − 5

2 (−d1)
1/2d−2

1 d2s + 15
16d

−3
1

[
11d2

2 − 14d1d3
]
s2

+ 45
16 (−d1)

1/2d−5
1

[
28d2

1d4 − 56d1d2d3 + 29d3
2

]
s3 + · · ·} . (9)

It is evident that the meaningful quantities to ‘assess the degree of saturation’ of the
inequalities are not C1 and C2, themselves, but rather the quantities RC1 and RC2, which are
the ratios of C1 and C2 respectively, to �E:

RC1 = C1

E1p − E1s
and RC2 = C2

E1p − E1s
. (10)

These (dimensionless) quantities can be used directly to evaluate the ‘percentage deviations’
from equalities of inequalities (1b) and (2b) respectively, which express the difference between
the two sides of each inequality with respect to their l.h.s. (E1p − E1s).

The expression of RC1 which is derived is the following:

RC1 	 RC1a = 1 − (PQ)−1 (11)

where P and Q are the quantities in curly brackets in formulae (7) and (8), respectively (where,
however, the higher terms denoted by dots had been neglected).

We may also write

RC1a 	 RC1b = 5
16d

2
2d

−3
1 s2

{
1 + 3

4 (−d1)
1/2d−2

1 d−1
2

[
31d2

2 − 28d1d3
]
s + ϑ(s2)

}
.

(12)

On the other hand, for RC2 we have

RC2 	 RC2a = 15
16d

2
2d

−3
1 s2

{
1 + 1

12 (−d1)
1/2d−2

1 d−1
2

× [
227d2

2 − 252d1d3
]
s + ϑ(s2)

}/
P (13)

or

RC2a 	 RC2b = 15
16d

2
2d

−3
1 s2

{
1 + 1

12 (−d1)
1/2d−2

1 d−1
2

× [
257d2

2 − 252d1d3
]
s + ϑ(s2)

}
. (14)

We may note that all the above expressions of RC1 and RC2 depend exclusively on the
dimensionless parameter s and on the numbers dk which determine the potential shape. We
may also note from their (truncated) expansions in s (see RC1b and RC2b) that they are of
order s2 and higher and therefore they are expected in general to be quite small. Thus, the
correction terms C1 and C2 are of the order s3 and higher (since �E is of order s and higher
as is clear from (7)).

In figures 1 and 2, the absolute values of RC (that is of RC1a,RC1b,RC2a,RC2b)
are displayed as functions of s, for small values of this parameter, in the case of the PT
and the Gaussian potential, respectively. The percentage deviations from the respective
equalities are quite small and increase with s. The condition of considering sufficiently
small values of s is necessary in order that the pertinent formulae for RC1 and RC2 provide a
reasonable estimate of those quantities, as one can also check by employing the more laborious
task of solving numerically the Schrödinger equation to determine its eigenfunctions and
eigenvalues and also calculating numerically the expectation values involved. The values of
RC1a,RC1b,RC2a,RC2b obtained with the approximate analytic formulae given in this
paper are in fair agreement with the corresponding values of RC1 and RC2 obtained through
the numerical solution of the Schrödinger equation, as long as s is very small.
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Figure 1. The variation of the quantities RC1a, RC 1b,
RC 2a and RC 2b (see text) with the dimensionless
parameter s, for the (reduced) Pöschl–Teller potential.

Figure 2. The same as in figure 1 for the Gaussian
potential.

We may observe that for a given (small) value of s, the (absolute) values of RC1 are
smaller than those of RC2 and therefore we may conclude that the first inequality ‘saturates
better’ than the second inequality. Furthermore, both parameters RC1 and RC2 have smaller
values for the Gaussian potential in comparison with the corresponding values for the PT
and therefore we may also conclude that the saturation of the inequalities for the Gaussian
potential is better.

Finally, in order to discuss the inequalities in connection with a specific physical problem,
we consider the binding energy of a � particle in finite nuclei and the determination of the
potential parameters by fitting to known experimental values of the two lowest energy levels
for a number of hypernuclei [12]. We find that a very good fit is obtained by treating as
fitting parameters the potential depth and the parameters a and r0 in the expression of the
potential radius R = a + r0A

1/3
c , whereAc is the mass number of the core nucleus. For the PT

potential the best fit values are D = 34.29 MeV, a = −1.371 fm, r0 = 1.649 fm, while for
the Gaussian D = 33.89 MeV, a = −1.241 fm, r0 = 1.698 fm. Using these values we can
estimate RC1 and RC2 when s is sufficiently small. For example, in the case of 89

�Y where
s is rather small we may estimate that for the PT potential (s = 0.1204) RC1a = 0.0046,
RC1b = 0.0029. The value obtained by solving the Schrödinger equation numerically is
0.0036. Also RC2a = 0.0082, RC2b = 0.0078 (while the corresponding value from the
Schrödinger equation is 0.0087). For the Gaussian potential (s = 0.1145) RC1a = 0.0030,
RC1b = 0.0016. The value from the numerical solution of the Schrödinger equation is
0.0024. In addition, RC2a = 0.0046, RC2b = 0.0044 (while the corresponding value from
the Schrödinger equation is 0.0058). We again realize that the saturation of (1b) is better than
that of (2b).

Before ending, it would be pertinent to recall that other numerical techniques in studying
our basic inequalities could also be used. In particular, an efficient numerical form of the HVT
(such as the so-called renormalized hypervirial perturbation theory (renormalized HVPT))
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[13] which does not halt at any term of the algebraic expansion, would be very appropriate.
Such an approach has been extensively used in the literature in treating various problems
(see e.g. [5, 14]). Two interesting applications of that method were made recently, where the
method was also summarized. The first application [15] refers to the treatment of a non-linear
Schrödinger equation with power-law potential terms and the other [16] to a Penning trap
problem.
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